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Abstract— Wavelet transformation has been an interesting field since its exposure with wavelet-based compression standard embedded zerotree wavelet. 

Though, the origin of wavelets back to many decades, the presence of research at the very beginning of wavelet bases is also being carried out in the research 

community. This is because of the wide presence of its applicability as well as its structure of adapting to the type of problem at hand. In this paper, an 

approach of designing biorthogonal wavelets is presented. This approach may be extended to design variety of wavelets. This paper mainly focus on the 

design steps and corresponding coding in MATLAB. By varying the length, type of the bases and other parameters, different wavelets may be devised. 

Index Terms—  Biorthogonal wavelets, Spline function, wavelet base, wavelet design   

1   ORIGIN OF THE PROPOSAL     

Wavelet transformation has extended its presence from mathematical to signal processing, image analysis and industrial 

applications. In contrast to its predecessors, it has the ability of adapting to the application as well as input signal at hand. In Fourier 

transform, there is no flexibility of selecting basis function and it is not possible to resolute in time domain. The short-time Fourier 

transform, however, has the feature of providing some sort of time information along with the frequency data at these intervals. The 

wavelet transform, on the other hand, gives a complete control over both the time and frequency intervals.  

 As mentioned earlier, in addition to the flexibility of time-frequency resolution, the wavelet transform has a feature 

selecting different basis functions for different problems. The definition of wavelet transform itself has the feature selecting basis 

function, which is fixed and can’t be changed in earlier Fourier transform based schemes.  

 This flexibility has opened the doors of designing new wavelets for different applications and for different input 

categories. The very beginning of wavelet transform started by the definition of Haar function which is used as basis function of the 

very first wavelet, i.e., Haar wavelet. Since then, as many as thousands of wavelets are designed, implemented, and applied on 

different problems. By changing the parameters of one basis function itself, many wavelets are designed as in Daubechies wavelets. 

In this paper, design procedure of bioorthogonal wavelets is presented.  

In 1994, R. A. DeVore proposed a flexible foundation for image compression [1]. In 1996, Michael G. Strintzis proposed 

biorthogonal wavelet bases for signal decay [2]. In 2007, Kharate, Patil and Bhale compared the image code application using 

different wavelet bases [3]. In 2013, Vijay S. Chourasia and Anil Kumar Tiwari proposed a novel algorithm based on wavelet 

mutations developed to extract signals from Fetal phonocardiography (fPCG) [4]. In 2015, Noor Kamal, Mohd Ali, Ahmad, Shabiul 

Islam and Escudero proposed a selection of motherboard EEG signal analysis for multiple channels during the working memory 

process [5]. In 2016, Gengesa Garg proposed an algorithm for selecting a fixed wave function [6]. 

2   IMPORTANCE OF THE PROPOSAL IN THE CONTEXT OF CURRENT STATUS 

In all the applications, the wavelet is treated as a tool to represent the data in a representation where the specific application can 

be served in an efficient way. The algorithms associated with each application are run on the wavelet transformed data. This data is 

a result of inner product of original time/spatial domain data with the basis function of the wavelet. The inner product serves as the 

similarity measure between the input data and basis function. In inverse wavelet transform, another inner product will result a 

function which has such similarity with the basis functions. All the standard wavelets will satisfy the perfect reconstruction where 

the reconstructed signal is the same as that at input. It’s not just the perfect reconstruction which has to be met, but also the recital of 

concerned application. 

3   WAVELETS IN IMAGE PROCESSING 

Few decades ago, there are finite and defined image processing tasks that are carried and experimented by the research 

community of image processing and computer vision. But, over the past decade there are many distinct and custom image 

processing tasks introduced to serve the purpose of the minute. In this section, few of traditional and modern applications of image 

processing are review. It is important to know that the wavelet processing has influenced if not all, most of the image processing 

tasks.  
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The first one to mention is image compression. Image compression involves transformation of raw data into a form which is 

more compatible to a small memory without losing much information. Early image compression algorithms are implemented in 

spatial domain where the pixel values are coded in some fashion to incorporate compression. But, in 1993, a famous image 

compression codec is proposed which has changed the fate of wavelets [7]. The codec is Embedded zerotree wavelet. Coding was 

done by transferring significant map of wavelet domain in a systematically designed symbol format. Further, these symbols are 

coded using regular coding schemes like entropy coding.  Later, in 1996, another popular image compression standard Set 

partitioning in hierarchical trees (SPIHT) and then many advanced coding schemes are proposed for wavelet-based image 

compression [8]-[11]. 

 Image restoration is another key task that is being performed using wavelet transforms. Image restoration can be deblurring, 

denoising, compressed sensing or super resolution [12]. Image restoration involves a sequence of steps to restore the best estimate 

of the original image from deteriorated version of the image. The next generation schemes like sparse coding are evolved from 

wavelet usage extensions in image restoration [13]. Wavelet domain was analyzed in depth to understand what the wavelet domain 

coefficients contains and how they relate and affect the reconstruction process. Wavelet coefficients themselves are adaptive in 

default form, yet the sparse coding was derived from this kind of analysis.  

Image watermarking is extensively implemented in wavelet domain. The clue for this is that there exist multiple levels as 

decomposition can be extended in hierarchical structure. Also, out of the decomposition bands, few are of less importance. This 

gives rise to use the band for storing secret information without changing the host appearance [14]. 

Image fusion is task of mixing multiple images into one image. This is generally done when the object of interest possesses 

different appearance when viewed in different angles. Normally, multi-sensor system requires image fusion by default. As 

mentioned earlier, wavelet domain has multiple bands, and these bands are mixed in different ways to produce fused image [15].  

Some modern applications of wavelets in image processing involve corner detection, deraining, dehazing, object counting and 

many more [16][17]. As there exists many areas in industry where human interventions are difficult, autonomous systems are 

employed where images of the scene are processed in real-time to extract whatever the information we need in no time. 

4   METHODOLOGY 

The design process of wavelet differs by its type. Fundamentally, there are two types of wavelets: orthogonal and biorthogonal. 

As the biorthogonal wavelets has an additional advantage of design flexibility, these wavelets will be chosen for further research.  
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The general form of Spline of order k is given by 
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Consider Spline of order 4 which is given below. 
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Rewriting the above equations using (9) becomes 
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For a total of 4 variables, four equations are formed but, in these equations, only the equations (10), (11) and (13) are independent. 

Hence another equation is formed below using vanishing moments. From vanishing moments condition,  
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The coefficients of newly designed biorthogonal wavelet are given in the table below. 

 

K -01 00 01 02 03 04 05 06 

h
~

 
 0.13260 -0.53030 0.22100 1.76780 0.22100 -0.53030 0.13260 

g~   0.08840 -0.35360 0.53030 -0.35360 0.08840   

h    0.0884 0.3536 0.5303 0.3536 0.0884  

g  -0.1326 -0.5303 -0.2210 1.7678 -0.2210 -0.5303 -0.1326  

 

Simulation Work: 

Solving the equations. 

syms h0 h1 h2 h3; 

[h0 h1 h2 h3] = solve('2*h0 + 2*h1 + 2*h2 + h3 - sqrt(2)',... 

     '(1/(4*sqrt(2)))*h1 + (1/sqrt(2))*h2 + (3/(4*sqrt(2)))*h3 -1',... 

     '(1/(2*sqrt(2)))*h0 + (1/(8*sqrt(2)))*h1',... 

     '2*h0 - 2*h1 + 2*h2 - h3') 

2. Adding the designed wavelet to the toolbox. 

familyName      = 'New Biorthogonal of JK'; 

familyShortName = 'jkb'; 

familyWaveType  = 2; 

familyNums      = ''; 

fileWaveName    = jkb.mat'; 

 Df = [ (1/(8*sqrt(2))) , (4/(8*sqrt(2))) , (6/(8*sqrt(2))) , ...    

        (4/(8*sqrt(2))) , (1/(8*sqrt(2)))]; 

Rf = [ (3*sqrt(2)/32) , (-3*sqrt(2)/8) , (5*sqrt(2)/32) , ... 

       (5*sqrt(2)/4) ,  (5*sqrt(2)/32) , (-3*sqrt(2)/8) , (3*sqrt(2)/32)] 



INTERNATIONAL JOURNAL OF EMERGING RESEARCH IN ENGINEERING, SCIENCE, AND MANAGEMENT, VOL 1, ISSUE 1, JAN-MAR 2022 

 
IJERESM©2022                            https://doi.org/10.58482/ijeresm.v1i1.2  9 

    save jkb Rf Df 

    wavemngr('add',familyName,familyShortName,familyWaveType, ... 

         familyNums,fileWaveName) 

    wavemngr('read') 

 

3. Plotting the wavelet functions. 

    wname = 'jkb'; 

    clf; wavefun(wname,'plot',7); 

 

4. Checking the Perfect Reconstruction on Images 

I = imread('lena.jpg'); 

[cA,cH,cV,cD] = dwt2(I,'jkb'); 

X = idwt2(cA,cH,cV,cD,'jkb'); 

[PSNR,MSE] = measerr(I,uint8(X)) 

 

5. Apply for Image Compression 

I = imread('lena.jpg'); 

[cA,cH,cV,cD] = dwt2(I,'nbm'); 

dec=[... 

        cA,cH 

        cV,cD 

         ... 

    ];  

sX=size(cA); 

[r c]=size(I); 

input_size=r*c*8; 

  bitbudget = 1000000; 

[encoded bits] = cSPIHT(dec, 1, bitbudget); 

CR=input_size/bits 

[decoded level] = dSPIHT(encoded, bits); 

  sX1=size(decoded); 

m1 = decoded; 

CA = m1(1:(sX(1)), 1:(sX(1)));%LLH3 

CH = m1(1:(sX(1)), (sX(1) + 1):sX1(1));%LHL4 

CV = m1((sX(1) + 1):sX1(1), 1:(sX(1)));%HLH3 

CD = m1((sX(1) + 1):sX1(1), (sX(1) + 1):sX1(1));%HHH3 

  Ir=idwt2(CA, CH, CV, CD,'nbm'); 

  [PSNR] = measerr(I, Ir) 

 

The above description gives the overall structure of designing a biorthogonal wavelet given the size and basis function. 

5   CONCLUSIONS 

The application of wavelets extended over varied fields including design, industry, and scientific analysis. The input invariant 

transformations are gaining importance as the new transformations are introduced. This trend is increasing with the evolution of 

sparse coding. Towards this end, in this paper, an attempt has been made to present the design of biorthogonal wavelets from 

scratch. The basis function is defined using which the scaling and wavelet coefficients are calculated. Finally, an approach to test its 

perfect reconstruction condition as well as application on images is presented. 
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